
New Flow Control Paradigm for Next
Generation Networks1

Jian Pu and Mounir Hamdi
Department of Computer Science

Hong Kong University of Science and Technology
Hong Kong, China

{pujian, hamdi}@cs.ust.hk

Abstract Quick Flow Control Protocol (QFCP) is a new
congestion control protocol designed for high bandwidth-delay
product networks. QFCP has two good features: "quick start"
and "quick convergence". It allows a sender to start with a high
initial sending rate identified by routers along the path, and all
running flows converge to the fair-share sending rate quickly
based on feedback from routers. Although it needs the assistance
of routers, QFCP does not require routers to store any per-flow
information or to do any complex per-packet calculation. The
rate allocation algorithm is quite simple and only needs to be run
periodically by routers. We have implemented QFCP in Network
Simulator (NS). Simulations have been done to address the issues
such as fairness, convergence, responsiveness and utilization, as
well as flow completion time for Poison-arriving Pareto-
distributed-size flows. Performance evaluation of these
simulations is presented in this paper. The preliminary results
are promising.

I. INTRODUCTION

P revious research on the Internet traffic has revealed an
important feature at the flow level: most of the flows are
very short, while a small number of long flows account

for a large portion of the traffic [1], [2]. This is known as the
heavy-tailed distribution. But when the congestion control
algorithm for TCP [3] was designed, flows are modeled as
"long-lived flows" instead, which means that all flows are
assumed to be long enough to reach their fair-share sending
rates before finishing. This assumption is acceptable when the
Internet is mainly composed of low-speed links. However, if
most flows are short as in today's high-speed networks, can
the congestion control algorithm built in TCP continue to
work efficiently?

The answer is no. On the one hand, a short flow always
starts with a very low initial sending rate and often gets less
than its fair-share rate before finishing. And the duration of a
short flow is often significantly prolonged due to packet loss,
which causes timeout and packet retransmission [4]. On the
other hand, a large number of short flows may also adversely
impact the performance of long flows. [5] shows that
randomly generated sequence of short flows may reduce the
throughput of long flows up to 10%, and some special pattern
of short flows can even cause greater reduction (>85%). The
reason is that short flows spend most of their lifetime in the

1 This research was supported in part by the Hong Kong Research Grant
Council under Grant RGC HKUST6260/04E.

Slow Start phase when their congestion windows increase
exponentially. Thus, a burst of short flows can rapidly capture
a great portion of the bandwidth and driven long flows into
timeout and window-halving. But the AIMD algorithm grabs
the available bandwidth very slowly and makes the time of
converging to the fair-share rate very long for the long flows.
As the Internet keeps evolving into a high bandwidth-delay

product (BDP) network, more and more flows are becoming
short flows. And the adverse impact of TCP congestion
control may become increasingly severe. We need to design a
new congestion control protocol for the high-speed networks
achieving the following metrics:
* For short flows, they can get high initial sending rates at

the start so that they can finish quickly ("quick start").
* For long flows, they can converge to the fair-share

sending rate quickly and have maintainable high
throughput ("quick converge").

In most currently proposed congestion control protocols,
each new flow starts with a low sending rate and then probes
the network for the unused bandwidth. They only show that
they can achieve fair rate allocation for long-lived flows. But
short flows may suffer.

If the router can find a way to compute the number of active
flows and assign the fair-share rate to each flow, there will be
no need to let flows wait for many RTTs to probe the fair rate
by themselves. Hence, we try to design a router-assisted
congestion control protocol similar to XCP [6] and RCP [7].
The sending rate of each flow is controlled by routers along
the path. The router senses the degree of congestion
periodically and calculates a global fair rate for all flows
passing through it. A new flow will start with the same
sending rate as the other ongoing flows because they get the
same feedback from routers. Additionally we want the routers:
* Don't store any per-flow information.
* Don't maintain any large hash tables or do any hash

computation (vs. hash-based flow counting algorithm).
* Don't do complex per-packet calculation.

II. PROTOCOL DESIGN

A. Framework
We use a similar framework of Quick-Start [8], but we

extend the rate-request-and-grant mechanism to the whole
lifetime of a flow: (1) The sender includes a "Rate Request"



field in the header of each outgoing packet and sets the initial
value of this field to be the desired sending rate of this sender;
(2) When the packet reaches a router, the router compares the
value in "Rate Request" field with the router's own fair-share
rate and puts the smaller one back into that field; (3) On
receiving the packet, the receiver copies the "Rate Request"
field into the "Rate Feedback" field of the corresponding ACK
packet and sends it back to the sender; (4) When the sender
receives the ACK packet, it reads the value in the "Rate
Feedback" field and adjusts its sending rate accordingly.

The sender sets the size of its congestion window according
to the rate feedback using the formula:

cwnd = rate * RTT, (1)
where cwnd is the congestion window size, rate is the rate

feedback, and RTT is the moving average Round-Trip Time
measured by the sender.

B. Rate Allocation Algorithm
The rate allocation algorithm is used by the router to

compute the fair-share rate R periodically. One router
maintains only one global fair-share rate for each output
interface. This rate R is the maximum allowed rate for flows
going through this interface during the current control period
T. T is set to be the moving average of RTTs of all packets.
The current number of flows through this interface is
estimated using the aggregate input traffic rate and the fair-
share rate assigned in the last control period. And the fair-
share rate is updated based on the flow number estimation as
follows.

N(t) = y(t) '
R(t -T)'

c-, q(t)
, I ,77I'

N(t)
R(t) =

where N(t) is the estimation of the flow number, y(t) is the
input traffic rate during the last control period, R(t) is the fair-
share rate, C is the bandwidth capacity of the output link, q(t)
is the queue size, ,B is a constant parameter, T is the control
period.

This parameter ,6 can be set as a policy by the router
administer. A large value of ,l means one wants to drain up the
queue more aggressively. The theoretical analysis of the
impact of this parameter is left to future work. Currently we

set the value of as 0.5 in our NS implementation.

C. Technical Details

Burstiness Control: When designing congestion control
protocols for large BDP networks, researchers often find that
pure window-based rate control is not enough and additional
burstiness control is needed (e.g., FAST [9]). This is because
window control is too rough and may trigger a large burst of
packets injected into the network all at once (e.g., in the Slow
Start phase of TCP). But such violent increase of congestion
window is sometimes unavoidable in order to achieve good
responsiveness and high throughput, especially in large BDP
networks. In QFCP, we use the rate-based pacing to avoid

possible burstiness caused by a sudden increase of congestion
window. So although the sender may set a large window as
approved by the rate feedback in the first ACK packet, it still
needs to pace these packets out in one RTT based on the
assigned sending rate. Thus, congestion window controls how
many packets can be sent in one RTT, while burstiness control
paces these packets out in a smooth way.

Rate Stabilization: If the assigned fair-share rate changes
too quickly, the formula (2) we use to estimate the number of
flows based on the previously assigned rate may fail. The
reason is that there may be flows with RTT longer than the
control period T using R(t-271) instead of R(t-T) as the
sending rate. So for the sake of the accuracy of the flow
number estimation, we don't want the rate assigned for two
consecutive intervals to be very different. Thus, in order to
stabilize the rate, we use the average of the current computed
rate and the most recently assigned rate as the new rate:

R(t) R(t) + R(t - T)R(t) 2 (4)
Reaction to Packet Loss: If the queue of an interface is

overflowed, the router will drop packets and add the number
of dropped packet to q(t) as q(t) in formula (3), because this is
the real queue size that should be drained during the next
interval. The router will use this "virtual queue size" in
formula (3) to compute the new rate. The sender will just
retransmit the dropped packets without any further reaction.
This is very different from the loss-based congestion control
protocols, which will adjust the congestion window if
encountering packet loss. So in QFCP, it is very easy to
differentiate the two kinds of packet loss: one is due to the
congestion; the other is due to transmission error. Because the
rate is totally determined by the routers, the routers will adjust
the rate according to the degree of congestion. There is no
need for the end-systems to guess whether congestion happens
or not when they encounter packet loss.

III. SIMULATION AND EVALUATION

A. Flow Completion Time
For fixed-size flows (e.g., FTP, HTTP), the most attractive

performance criterion is the flow completion time (FCT). Here
we simulate a scenario where a large number of Poison-
arriving Pareto-distributed-size flows share a single bottleneck
link of 150 Mbps. The total flow number is 60000. The
common Round-Trip Propagation Delay (RTPD) of all flows
is 100 ms. Flows arrive as a Poison process with an average
rate of 625 flows per second. The packet size is 1000 bytes.
The flow sizes are Pareto distributed with a mean of 30
packets and a shape parameter of 1.2. Thus, the offered traffic
load on the bottleneck link can be estimated as:
8*packet size*mean flow size*flow_arrival_rate/bandwidth
=1. We intentionally set the traffic load as 1 because we want
to do "stress test" - high traffic load is often the situation
where differentiates the performance of congestion control
protocols. We record the size and completion time for each
flow in the simulation, then average the flow completion time



for flows with the same size.
60

TCP
~50xc

E a \ S RCP
H- 40 ~~~~~QFCP

' 30
E
C)20

-0 30
0

a)
25

E
F- 20
0

' 15

C) 10

TCP
XCP
RCP
QFCP

~-05
i 0LL 1 - LL 5 ~It t 0 '

0 M a' 0
<0 05 1 1.5 2 2.5 3 < 0 500 1000 1500 2000 2500 3000

Flow Size (packets) x 104 Flow Size (packets)

(a) all flows (b) flows with size < 3000 packets

Fig. 1. Average flow completion time (AFCT) vs. flow sizes for Poison-
arriving Pareto-distributed-size flows. (a) is the global picture for all flows.
(b) is a close look at short flows

Note that in order to make the result more accurate, we
don't wait for all flows to finish, but stop the simulation just
on the arrival of the 60000th flow. The reason is that the
offered traffic load may drop after the arrival of the last flow,
since all active flows are going to finish but no new flow is
going to join. Each simulation is conducted for each protocol:
TCP-Reno, XCP [6], RCP [7], and QFCP. The scenario
settings and the input data (i.e., the size and arriving time of
each flow) are identical for each simulation. The results show
that the Average Flow Completion Time (AFCT) in QFCP is
significantly shorter than that in TCP, XCP or RCP.

For TCP, the AFCT is very oscillatory again the flow size.
The reason is that although the exponential increase of
congestion window in Slow Start does help some short flows
finish quickly, the duration of other flows are prolonged due to
packet loss. And we should point out that Slow Start is not a
good way to shorten the duration of flows, because it actually
does not know the proper initial sending rate but just intends
to fill up the buffer of routers and cause packet losses, which
prolongs the flow duration.

For XCP, it does not use Slow Start. Instead, when new
flows join, XCP tries to reclaim the bandwidth from the
ongoing flows and reallocate it to the new flows little by little.
For short flows they may finish before reaching the fair
sending rate. That is why the completion time of short flows in
XCP is the longest. However, the AFCT against flow size in
XCP is more stable than in TCP because XCP flows
experience fewer packet losses.

For RCP and QFCP, both of them give a high initial
sending rate to new flows based on the feedback from routers
and help short flows finish quickly. However, the formula
used in RCP to estimate the number of flows holds only when
the input traffic just fills up the link capacity C, otherwise it
leads to wrong estimation of the flow number. This wrong
estimation of flow number makes the rate allocation in RCP
under-optimum and thus prolongs the FCT in general
compared with QFCP.

B. Fairness and Convergence
For fixed-time flows and long flows, we are more interested

in the fairness of bandwidth allocation among all flows. This
simulation is conducted to show the convergence and fairness
of bandwidth allocation among flows, and the bottleneck link

utilization for QFCP, XCP, and RCP. In this scenario, four
flows share a single bottleneck link of 45 Mbps. The common
RTPD of each flow is 40 ms. Flow 1-4 start at time 0, 2, 4, 6
seconds and stop at 14, 12, 10, 8 seconds respectively. The
results show that QFCP can converge quickly to the fair-share
sending rate as flows join and leave, and can maintain a high
utilization of the bottleneck link.

x 106
6 ,1

Flow 1
Flow 2
Flow 3
Flow 4

-o
a)

a)
,,
0

Z .,

D 2-L

B~ 1-L
0o

O
0 2 4 6 8 10 12 14

Simulation time (seconds)

(a) QFCP: flow throughput

Flow 1
Flow 2
Flow 3
Flow 4

x 10'

a)

4

D~ 3-

. 2

0 2 4 6 8 10 12 14
Simulation time (seconds)

(c) XCP: flow throughput
x 106

6 1
Flow 1
Flow 2
Flow 3
Flow 4

0 5t
a)
a)4

3

5' 2

B: 1-L
0
LL-

08

06
._

04a) 04
a)

co 0.2

0 2 4 6 8 10 12 14
Simulation time (seconds)

(b) QFCP: bottleneck link utilization

0.8

06

04

m 02

0 2 4 6 8 10 12 14
Simulation time (seconds)

(d) XCP: bottleneck link utilization

0.8

0.6

04

m 02

0 00 I O-
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Simulation time (seconds) Simulation time (seconds)

(e) RCP: flow throughput (f) RCP: bottleneck link utilization

Fig. 2. Flow throughput and bottleneck link utilization

QFCP vs. RCP: The experiment shows that both protocols
try to converge to the fair rate allocation if all of the flows are
long enough. But due to the wrong estimation of the flow
number, the utilization of bottleneck link using RCP is
significantly worse than using QFCP and XCP. Moreover,
RCP converges to the fair rate slower than XCP and QFCP.
QFCP vs. XCP: The most significant difference between

QFCP and XCP is the initial sending rate. In QFCP, any new
flow starts with the same rate as the other ongoing flows, and
then converges to the fair rate if this new flow is long enough;
while in XCP, a new flow starts with a very low sending rate
and then converges to the fair rate. That's why QFCP can help
short flows finish within a few RTTs.

C. Flows with Variant RTTs
Previous simulation is conducted on flows with the same

RTPD. Now let's see whether QFCP is robust to high variance
in RTPD. There are two long-lived flows sharing a bottleneck
link of 45 Mbps. The RTPD of the first flow is 20 ms, while
the RTPD of the second flow is 200 ms. The result shows that
although the RTPDs of the two flows are very different, QFCP



oniy need a short time to converge to the fair rate. Compared
with the result in XCP (a similar result can be found in the
original XCP paper [6]), in the same scenario and using the
same settings, XCP needs 10 seconds to converge to the fair
rate while QFCP only needs about 1.5 seconds to converge.

x 106 x 106
6 6

Flow 1 with RTPD = 20 ms 6 Flow 1 with RTPD = 20 ms
o 5 Flow 2 with RTPD = 200 ms 0 5 Flow 2 with RTPD = 200 ms

e4 e4

-3

D 2 - 2

OL
5 10 15 0 5

Simulation time (seconds) Simulation time (s

(a) QFCP (b) XCI
Fig. 3. Two flows with high variance in RTPD

10
seconds)

p

D. Flows Sharing Multiple Bottleneck Links
Previous simulations consider only one bottleneck link for

simplicity. Now let's see whether this protocol can achieve
max-min fairness when multiple bottleneck links are involved.
In this simulation, there are two bottleneck links along the
path. Flowl and Flow2 share bottleneck Linkl of 20 Mbps.
Flow3 is bottlenecked at Link2 of 50 Mbps. All of the three
flows go through Link2. Thus, ideally the throughput of Flow I
and Flow2 should be 10 Mbps and the throughput of Flow3
should be 30 Mbps if congestion control works properly.

x 106 x 106
10I 10

0c, 8
a)

a)
>16

c 4-

2

2

Flow 1
Flow 2
Flow 3

0 1 2 3 4
Simulation time (seconds)

(a) QFCP: flow throughput

Flow 1
Floww2
Flow 3

° 8
a)

nj> 6

c 4-

2

LL

o ,; E,
0 1 2 3 4

Simulation time (seconds)

(b) TCP: flow throughput

rate assigned by Routerl. However, for Router2, only Flow3
can send at the rate assigned by Router2, while the sending
rate of the other two flows is limited somewhere else (Routerl
in this case). Thus, the estimated flow number N(t) on Router2
is about 1.6, which is much less than the actual flow number 3.
But this does not affect the stability and convergence of our
protocol. Fig. 5(a) shows that all the three flows converge to
their fair-share rate quickly and have maintainable high
throughput. So we don't have such assumption that "all the
flows must send at the assigned rate". The algorithm just
wants to find out an equivalent flow number N(t) that best
reflects the current situation of the network.
We also test the performance of TCP-Reno in this simple

multiple-bottleneck-link scenario. The result shown in Fig.
5(b) confirms our previous analysis on TCP. The exponential
increase of congestion window in the Slow Start phase quickly
fills up the buffers of routers and causes packet drops. Then
the throughput of all flows drop significantly due to packet
retransmission and congestion window reduction. And flows
quit the Slow Start phase and enter the congestion avoidance
phase. But the AIMD algorithm grabs the available bandwidth
very slowly.

IV. CONCLUSIONS
In this paper, we present the design and simulations of a

new congestion control protocol QFCP. It gives a high initial
sending rate for new flows as approved by routers. It can
significantly shorten the completion time of both short and
long flows. It can also converge to the fair-share sending rate
quickly when flows join or leave. And it is robust to flows
with variant RTTs. The computation overhead on routers is
acceptable and most calculations only need to do periodically.
Future work may include implementing QFCP in Linux and
deploying it in the real networks to test its performance. And
establishing some mathematical models of QFCP and doing
theoretical analysis are also desirable.

25

1 5

05

0

(C) Q:

1.5

- 1

0.5

1 2 3 4 5 0 1 2 3 4
Simulation time (seconds) Simulation time (seconds)

)FCP: N(t) on Routerl (d) QFCP: N(t) on Router2

Fig. 4. Three flows sharing two different bottleneck links

One may doubt that "Is one global rate for one output
interface is enough? If some flows can not reach the sending
rate assigned by a router, will the router still estimate the flow
number correctly?" We should point out that the N(t)
estimated by a router is not the actual flow number but the
equivalent flow number. And N(t) can be any float number
that greater than or equal to 1 (this minimum value 1 is set to
avoid bandwidth oversubscription). Here is an example. For
Routerl, the estimated flow number is consistent with the real
flow number 2, because both Flow and Flow2 can use up the

REFERENCES
[1] M. E. Crovella and A. Bestavros, "Self-similarity in World Wide Web

traffic: evidence and possible causes," IEEEIACM Transactions on
Networking, vol. 5, pp. 835-846, 1997.

[2] K. Claffy, G. Miller, and K. Thompson, "The Nature of the Beast:
Recent Traffic Measurements from an Internet Backbone," in
Proceedings ofINET'98, 1998.

[3] V. Jacobson, "Congestion avoidance and control," in Proceedings of
ACMSIGCOMM'88, 1988.

[4] G. Liang and I. Matta, "The war between mice and elephants," in
Proceedings ofICNP '01, 2001.

[5] S. Ebrahimi-Taghizadeh, A. Helmy, and S. Gupta, "TCP vs. TCP: a
systematic study of adverse impact of short-lived TCP flows on long-
lived TCP flows," in Proceedings ofINFOCOM2005, 2005.

[6] D. Katabi, M. Handley, and C. Rohrs, "Congestion Control for High
Bandwidth-Delay Product Networks," in Proceedings of ACM
SIGCOMM'02, 2002.

[7] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown,
"Processor Sharing Flows in the Internet," in International Workshop on
Quality ofService, 2005.

[8] A. Jain, S. Floyd, M. Allman, and P. Sarolahti, "Quick-Start for TCP and
IP," in IETF Internet-draft, work in progress, 2005.

[9] C. Jin, D. X. Wei, and S. H. Low, "FAST TCP: motivation, architecture,
algorithms, performance," in IEEE INFOCOM, 2004.

I

oL
5


